TES observations of tropospheric ozone as a greenhouse gas (Climate Related Observations of TES)
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» ‘Medium’ level of scientific understanding - need to improve certainty of future predictions

* Instantaneous forcing due to water vapor in the ozone band must be assessed to properly quantify the
ozone forcing. The water vapor forcing dominates the radiative budget in the tropics.
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« Understanding the radiative budget requires us to disentangle the impacts of ozone, water vapor,
and clouds.
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*Future mission designs must include high-spectral measurement, like TES, which are the only way
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2008 . S510301 3026 TE e, 9851080 e to get at vertical information about ozone, and to separate water vapor, ozone, clouds, and SST.
Figure 5. (above) Measurements are grouped in SST bins, and for each bin, ensemble sensitivity of OLR to Future climate missions such as CLARREO, can build off the success of AIRS, TES, IASI, and the
UT ozone and water vapor is calculated by regression. The sensitivities are in W/m2/DU for ozone, and then science analysis techniques that are rapidly developing.

are mapped for a global view of the sensitivity.
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